skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumah, Divine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rashba spin–orbit coupling locks the spin with the momentum of charge carriers at the broken inversion interfaces, which could generate a large spin galvanic response. Here, we demonstrate spin-to-charge conversion (inverse Rashba–Edelstein effect) in KTaO3(111) two-dimensional electron systems. We explain the results in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. We also show that the angle dependence of the spin-to-charge conversion on in-plane magnetic field exhibits a nontrivial behavior, which matches the symmetry of the Fermi states. Results point to opportunities to use spin-to-charge conversion as a tool to investigate the electronic structure and spin texture. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. A central problem in modern condensed matter physics is the understanding of materials with strong electron correlations. Despite extensive work, the essential physics of many of these systems is not understood and there is very little ability to make predictions in this class of materials. In this manuscript we share our personal views on the major open problems in the field of correlated electron systems. We discuss some possible routes to make progress in this rich and fascinating field. This manuscript is the result of the vigorous discussions and deliberations that took place at Johns Hopkins University during a three-day workshop January 27, 28, and 29, 2020 that brought together six senior scientists and 46 more junior scientists. Our hope, is that the topics we have presented will provide inspiration for others working in this field and motivation for the idea that significant progress can be made on very hard problems if we focus our collective energies. 
    more » « less
    Free, publicly-accessible full text available June 25, 2026
  3. Revealing anisotropic nature of 2D superconductivity in the context of electronic structure, orbital character, and spin texture. 
    more » « less
  4. A facile and novel processable method to synthesize the Ni nanoparticles (Ni NPs) by tailoring their size in the matrix of the silicon oxycarbide (SiOC) ceramic system is reported. This method is based on polymer‐derived ceramics (PDCs), instead of the conventional powder route. The specific structural characteristics and magnetic properties of the various Ni NPs/SiOC composites as a function of carbon content are systematically investigated. The magnetic properties are experimentally investigated as a function of NP size and measurement temperature. It is demonstrated that the change in the size of Ni NPs (average from ≈4 to ≈ 19 nm) determines the magnetic nature of superparamagnetism. Zero‐field‐cooled (ZFC) and field‐cooled (FC) magnetization studies under magnetic fields of 100 Oe are performed. The saturatedMversusH(M–H) loops (saturation magnetization) increase and the coercivity decreases with the size reduction of Ni NPs. It is an indicator of the presence of superparamagnetic behavior and single‐domain NP for ceramic materials. 
    more » « less